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Abstract. We derive the asymptotic expansion of a class of two-dimensional Fourier integrals
that typically arise in perturbative treatments of the interaction of the quantized electromagnetic
field with atoms and other quantum systems. The principal difficulty that prevents the application
of standard methods is the fact that the integrand has a saddle point in the corner of the domain of
integration.

1. Introduction

Let I (λ) be the two-dimensional integral

I (λ) =
∫
D

yf (x)

y + 1
cos(λxy)dS (1)

wheref (x) is well behaved for 06 x 6 1 andD is the half-strip

{(x, y)| 06 x 6 1, y > 0}.
I (λ) is typical of the kind of integral that arises when second-order perturbation theory
is applied to the interaction of the quantized electromagnetic field with an atom which is
not located at the coordinate origin. The variabley ≡ |k| is the modulus of the photon
wavevector, the variablex ≡ cosθ is the cosine of the angle that the wavevectork forms with
the position vectorr of the atom with respect to the origin, andλ ≡ 2|r|. The oscillatory
factor cos(λxy) ≡ cos(2k · r) comes from the quantization of the electromagnetic field in
terms of plane waves, and the denominator(y + 1) has its origin in the energy denominator of
second-order perturbation theory and reflects the interaction of the photon field with virtual up-
transitions in the atom. The functionf (x) is specific to the problem under consideration; for
instance, when calculating the energy level shifts in an atom placed near a partially reflecting
wall, one has

f (x) = x −√x2 + n2 − 1

x +
√
x2 + n2 − 1

wheren > 1 is the refractive index of the wall (see Wu and Eberlein 1999).
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The problem is to find the asymptotic behaviour ofI (λ) asλ → ∞. This corresponds
to the long-distance approximation which is appropriate when the distance of the atom from
the origin is much greater than the typical wavelengths of atomic transitions. It is therefore
appropriate for most physical applications.

2. Discussion of the problem

For a general integral of the form∫
D′
F(x, y)eiK(x,y) dS (2)

contributions to the asymptotic expansion come from the boundary ofD′ and from stationary
points ofK(x, y) (see Wong 1989, ch 8, for example). This can be verified by means of a
process that is the two-dimensional equivalent of integration by parts. We have∫
D′
F(x, y)eiλK(x,y) dS = 1

iλ

∫
D′
∇ · (ueiλK(x,y)) dS − 1

iλ

∫
D′

eiλK(x,y)∇ · udS (3)

where the vector fieldu ≡ (u1, u2) is chosen so thatu ·∇K = F(x, y). A suitable choice is

u = F(x, y)

|∇K|2 ∇K.
The first of the integrals on the right-hand side of equation (3) can be transformed into a line
integral round the boundary ofD′, using Stokes’ theorem in the plane (Green’s theorem):∫

D′
∇ · (ueiλK(x,y)) dS =

∮
∂D′

eiλK(x,y)(−u2, u1) · d`.

The procedure can be applied again, to the second integral on the right-hand side of
equation (3), using a vector field̃u such that̃u ·∇K = ∇·u. This produces another boundary
term and a double integral of order(iλ)−2. Repeated application produces a series of boundary
terms in inverse powers ofλ together with a remainder term in the form of a double integral,
which one has to estimate in order to demonstrate that the expansion is asymptotic. The method
will only fail whereu is badly behaved. IfF(x, y) andK are well behaved, the method only
fails at stationary points ofK, where∇K = 0. Applying the Riemann–Lebesgue lemma to
the boundary integrals shows that the contributions to the asymptotic expansion come from
the corner points ofD′ (i.e. the end points of each boundary-line integral) and from points on
the boundary where∇K · d` = 0.

There are two standard methods of obtaining asymptotic expansions of integrals of the form
(2). One is to use Stokes’ theorem as outlined above. The other is to make a change of variable
(x, y) 7→ (s, t), wheret = K(x, y) ands parametrizes the curves ofK(x, y) = constant. The
s-integration, which does not involveλ, can then be done, leaving a one-dimensional integral
which can, in principle, be tackled by elementary methods.

The particular integral (1) presents difficulties, because:

• convergence problems arise as approximations are attempted;
• K has a saddle point at the origin (∇K = ∇(xy) = (y, x) = 0) which not only lies on

the boundary but is also a corner point;
• two of the boundary curves, namelyx = 0 andy = 0, are also curves of constantK(x, y):

this causes problems because the oscillatory nature of the integrand which gives rise to
the asymptotic behaviour is not then present.

In such cases, few general results are known (see e.g., Bleistein 1984); it is best to treat each
example individually. Below we show how the asymptotic expansion for integral (1) can be
obtained using rigorous methods which may be adapted to deal with other similar integrals.
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3. Notation

It is useful to define a functionE(λ), for λ > 0, by

E(λ) =
∫ ∞

0

eiu

u + λ
du. (4)

It is related to standard special functions as follows:

E(λ) = e−iλE1(−iλ) = g(λ) + if(λ) (5)

whereE1(z) is the exponential integral
∫∞
z
t−1e−t dt , andg(z) and f(z) are the auxiliary

functions defined, for example, in Abramowitz and Stegun (1970, 5.2.12 and 5.2.13).E(z) has
a simple asymptotic expansion as|z| → ∞, valid for | argz| < π :

E(z) ∼ − 1

iz

(
1 +

1

iz
+

2!

(iz)2
+

3!

(iz)3
+ · · ·

)
. (6)

4. Convergence of the integral

Convergence of the integral (1) is delicate. The obvious problem is that the integrand does not
become small asy → ∞; this limit would be a problem even without the factor ofy in the
numerator. For fixedx, it is the rapid oscillation of cos(λxy) that prevents they-integral from
diverging, but this effect is not uniform inx.

In view of these convergence problems, it is necessary to define the integral as a limit of
the form

I (λ) = lim
R→∞

lim
ε→0

∫ 1

ε

∫ R

0

y f (x)

y + 1
cos(λxy) dy dx. (7)

The order in which the two limits are taken matters. For example, in the casef (x) = 1, we
can evaluate the integral explicitly. Taking theε limit first gives

lim
R→∞

∫ R

0

∫ 1

0

y

y + 1
cos(λxy) dx dy =

∫ ∞
0

sin(λy)

λ(y + 1)
dy = λ−1

f(λ).

Taking theR limit first gives

lim
ε→0

∫ 1

ε

∫ ∞
0

y

y + 1
cos(λxy) dy dx = lim

ε→0

∫ ∞
0

sin(λy)− sin(ελy)

λ(y + 1)
dy

= λ−1
f(λ)− lim

ε→0
λ−1

f(ελ) = λ−1
f(λ)− π

2λ
.

Typically, the difference arising from the order in which the limits are taken isπf (0)/(2λ).
One can see how convergence problems arise in connection with the part ofD close to the
y-axis by considering the integral

lim
R→∞

lim
ε→0

∫ 1

ε

∫ R

0

y

y + 1
sin(λxy) dy dx (8)

which fails to converge, whichever limit is taken first.
The correct value of our integral is obtained by taking theε limit first, since the integral

arises essentially as an inverse Fourier transform and the Fourier inversion theorem applies in
this limit. We have therefore (taking theε limit)

I (λ) = lim
R→∞

∫ R

0

∫ 1

0

yf (x)

y + 1
cos(λxy) dx dy. (9)
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We can improve the convergence ofI (λ) by integrating thex-integral once by parts:

I (λ) = lim
R→∞

∫ R

0
f (1)

sin(λy)

λ(y + 1)
dy − lim

R→∞

∫ R

0

∫ 1

0

f ′(x)
λ(y + 1)

sin(λxy) dx dy

≡ λ−1f (1)f(λ)− 1

λ
Im I1,

where

I1(λ) =
∫
D

f ′(x)
y + 1

eiλxy dS. (10)

Further integration by parts is hindered by powers ofy emerging in the denominator and
preventing they-integral from converging asy → 0.

The integralI1(λ) is well defined: we can write

I1(λ) =
∫ 1

0

∫ 1

0

f ′(x)
y + 1

eiλxy dx dy + lim
R→∞

∫ R

1

∫ 1

0

f ′(x)
y + 1

eiλxy dx dy. (11)

The first of these integrals is clearly Riemann integrable, while the second can be integrated
by parts with respect tox giving an integrand which tends to zero asy →∞ fast enough for
the modulus to be Riemann integrable.

The integral (10) can be evaluated explicitly in certain cases. They-integral can be
expressed in terms ofE(λx). The resultingx-integral can then be evaluated by repeated
integration by parts if, for example,f (x) is a polynomial or of the form cos(nπx) (see
Prudnikovet al1990, 1.4.2.2 and 1.4.3.3). Although general asymptotic formulae can then be
obtained using Taylor series or Fourier series with estimates of the error terms, it is interesting
and important to investigate the asymptotic behaviour directly.

5. Asymptotics

The obstruction to further integration ofI1(λ) by parts is the behaviour at the origin and the
way round this is to subtract off the troublesome term. For a general integral of this form, we
write∫
D
F(x, y)eiλxy dS =

∫
D
(F (x, y)− F(0, y))eiλxy dS +

∫
D
F(0, y)eiλxy dS.

The first of these integrals is sufficiently well behaved atx = 0 to allow integration by parts
of the y-integral. ForI1(λ), this would increase the power of(y + 1) in the denominator.
This corresponds to taking the vector fieldu in equation (3) to be(0, F ) Alternatively, we
could integrate thex-integral by parts, which would generate higher derivatives off (x) in the
numerator; this corresponds to takingu = (F, 0). More generally, we could chooseu to be
unaligned with either of the axes.

For I1(λ), we are forced to work on thex-integral because the convergence asy →∞ is
not good enough to allow integration by parts of they-integral. We have

I1(λ) =
∫
D

xh(x)

y + 1
eiλxy dS +

∫
D

f ′(0)
y + 1

eiλxy dS

= 1

iλ

∫
D
∇ · [(0, h(x)/(y + 1))eiλxy ] dS

+
1

iλ

∫
D

h(x)

(y + 1)2
eiλxy dS +

f ′(0)
iλ

∫ ∞
0

eiλy − 1

(y + 1) y
dy

= − 1

iλ

∫ 1

0
h(x) dx +

1

iλ
I2(λ) +

f ′(0)
iλ

∫ ∞
0

eiλy − 1

(y + 1)y
dy (12)
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where

h(x) = f ′(x)− f ′(0)
x

and

I2(λ) =
∫
D

h(x)

(y + 1)2
eiλxy dS. (13)

The last integral in equation (12) can be be written in terms ofE(λ):∫ ∞
0

eiλy − 1

(y + 1)y
dy =

∫ ∞
0

i sinλy

y
dy −

∫ ∞
0

eiλy

y + 1
dy

+
∫ ∞

0
(cosλy − cosy)

dy

y
+
∫ ∞

0

(
cosy − 1

1 +y

)
dy

y

= iπ/2− E(λ)− ln λ− γ. (14)

The standard integrals are given by Gradshteyn and Ryzhik (1994, 3.781(2) and 3.784(1)).
It is not hard to estimate that the integralI2(λ) is o(λ−1) asλ→∞ so the expansion (12)

is asymptotic to orderλ−1.
So far, the method has been fairly general. The procedure could be repeated on the integral

I2 in order to obtain the next term in the expansion and a new integralI3 and the whole series
could be developed in this way. However, because of the specific form of the integrand of
I2(λ), it is possible to obtain a neater reduction formula which does not require the calculation
of new integrals. From the definition (13) follows

I2(λ) =
∫
D

h(x)eiλxy

y + 1
dS −

∫
D

yh(x)eiλxy

(y + 1)2
dS. (15)

The first of these integrals can be transformed using the method of equation (12):∫
D

h(x) eiλxy

(y + 1)
dS = − 1

iλ

∫ 1

0

h(x)− h(0)
x

dx +
1

iλ

∫
D

h(x)− h(0)
x

eiλxy

(y + 1)2
dS

+
h(0)

iλ
(iπ/2− E(λ)− ln λ− γ ). (16)

The second of the integrals in equation (15) can be transformed by integration by parts of the
x-integral:

−
∫
D

yh(x)eiλxy

(y + 1)2
dS = 1

iλ

∫ ∞
0

h(0)

(y + 1)2
dy − 1

iλ

∫ ∞
0

h(1)eiλy

(y + 1)2
dy +

1

iλ

∫
D

h′(x)eiλxy

(y + 1)2
dS

= h(0)

iλ
− h(1)

iλ
− h(1)E(λ) +

1

iλ

∫
D

h′(x)eiλxy

(y + 1)2
dS.

Adding gives

I2(λ) = h(0)

iλ
(iπ/2− E(λ)− ln λ− γ )− h(1)E(λ)− 1

iλ

∫ 1

0
h1(x) dx +

1

iλ
L1(λ)

where

h1(x) = xh′(x) + h(x)− h(0)
x

≡ f ′′(x)− f ′′(0)
x

and

L1(λ) =
∫
D

h1(x)

(y + 1)2
eiλxy dS.
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Note thatL1(λ) has exactly the same form asI2(λ), so we can repeat the process to obtain the
full asymptotic expansion forI2(λ):

I2(λ) ∼
∞∑
n=0

hn(0)

(iλ)n+1
(iπ/2− E(λ)− ln λ− γ )−

∞∑
n=0

hn(1)

(iλ)n
E(λ)−

∞∑
n=1

1

(iλ)n

∫ 1

0
hn(x) dx

wherexhn+1(x) = xh′n(x) + hn(x) − hn(0) ≡ f (n+2)(x) − f (n+2)(0), h0(x) = h(x) and
hn(0) = f (n+2)(0). Re-expressing in terms off (x) and tidying up gives

I2(λ) ∼
∞∑
n=0

f (n+2)(0)

(iλ)n+1
(iπ/2− ln λ− γ ) + E(λ)

(
f ′(0)−

∞∑
n=0

f (n+1)(1)

(iλ)n

)
−
∞∑
n=1

1

(iλ)n

∫ 1

0

f (n+1)(x)− f (n+1)(0)

x
dx. (17)

Again, the asymptotic nature of the expansion is easily established by approximating the
remainder term, which is essentially the integral

Ln(λ) =
∫
D

hn(x)

(y + 1)2
eiλxy dS. (18)

Note that the expression (17) depends onλ only through powers of iλ and through the
combination− ln λ + iπ/2≡ − ln(−iλ), which is expected, sinceI ∗2 (−λ) = I2(λ).

Finally, we have the asymptotic expansion forI (λ):

I (λ) ∼ Re

{(
ln λ + γ − iπ

2

) ∞∑
n=1

f (n)(0)

(iλ)n+1
+ E(λ)

∞∑
n=0

f (n)(1)

(iλ)n+1

+
∞∑
n=1

1

(iλ)n+1

∫ 1

0

f (n)(x)− f (n)(0)
x

dx

}
. (19)

We remark thatLn, defined by (18), vanishes iff (x) is a polynomial of degreen or less, in
which case the expansion is exact.

The coefficient ofλ−n−1, taking into account the asymptotic expansion (6), is

(−1)(n+1)/2

[
(ln λ + γ )f (n)(0)−

n−1∑
m=0

(n−m− 1)!f (m)(1) +
∫ 1

0

f (n)(x)− f (n)(0)
x

dx

]
for oddn, and

−(−1)n/2
π

2
f (n)(0)

for n = 2, 4,. . ..
There are alternative ways of expressing this coefficient: any of quantitiesf (n)(x) (in

the integral),f (n)(1) or f (n)(0) can be written in Taylor series about zero or about one. This
means that there may be some amount of ambiguity in answers to physical questions. For the
example of an atom outside a partially reflecting wall one cannota priori decide whether the
energy level shifts are primarily caused by perpendicularly reflected photons atx ≡ cosθ = 1,
as one would assume intuitively, or whether they are also substantially influenced by photons
travelling parallel to the surface of the wall at the grazing anglex ≡ cosθ = 0. A simple and
unambiguous answer to this question can be given only for the idealized limit of a perfectly
reflecting wall, whenf (x) = −1 so that only the second term in equation (19) contributes
anything at all andI (λ) = −ReE(λ) = −g(λ) exactly; then the effect is dominated by virtual
photons travelling on the shortest path to the wall and getting reflected back to the atom. For
non-ideal reflectors the physics involved is too complex to picture the situation in such a simple
way.
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